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Synopsis 

Results obtained by combining pattern recognition techniques with the organic microanalysis 
capability of laser ionization mass spectrometry (LIMS) for identifying and classifying the mass 
spectra produced from 19 different polymer formulations are reported. The data demonstrates that 
the LIMS mass spectra of many polymers are sufficiently unique to permit accurate classification 
of different polymers. The results obtained also suggest that pattern recognition procedures combined 
with laser microprobe analyses could provide a routine and reliable method of performing micro- 
analytical characterization of unknown polymers. 

INTRODUCTION 

Laser ionization mass spectrometry (LIMS) employs a high power density 
(irradiance) , focused laser pulse to vaporize and ionize the constituents of solid 
sample materials.' The LIMS technique is also referred to as laser microprobe 
mass spectrometry and is designated by acronyms such as LAMMS and 
LAMMA. Pulsed laser ionization coupled with time-of-flight mass spectrometry 
(TOFMS) provides a microanalysis capability in which essentially all the dif- 
ferent mass ions produced from a single analysis area can be detected for each 
laser pulse.' Typical performance characteristics of state-of-the-art LIMS in- 
strumentation include elemental detection sensitivities from 0.1 to 100 part 
per million atomic (ppma) and mass detection ranges as high as 1000 atomic 
mass units (amu) within analytical areas 1-5 pm in diameter.3 These unique 
microanalysis capabilities have been applied to a wide variety of elemental 
micr~analyses.~ Researchers employing laser microprobe mass spectrometry 
have long recognized that the technique has the potential for providing sensitive 
organic or molecular microanalysis of a variety of material  surface^.^ As a con- 
sequence, the interest is increasing in the organic microanalysis capability of 
LIMS for polymers6 and organic  compound^.^ 

The objectives of the work were to determine how well the LIMS technique 
could produce characteristic mass spectra from different organic polymer for- 
mulations and how useful these mass spectra are for identifying an unknown 
polymer. Principal component /discriminant analysis and expert system tech- 
niques were applied to LIMS data sets that contained spectra of as many as 
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19 different organic  polymer^.'^^ The results described demonstrate that LIMS 
mass spectra of different polymers are often quite distinct and can be readily 
resolved using pattern recognition techniques. In fact, this data illustrates that 
different types of polymers having similar chemical structures can be readily 
separated based on their characteristic LIMS mass spectra. 

EXPERIMENT 

Samples 

Table I lists the various polymers analyzed along with a description of their 
physical form. The polymers were either thin films ( 1 pm thick) or bulk solids. 
The thin-film samples were prepared by embedding beads or powders of the 
samples into Spurrs epoxy resin and microtoming thin sections that were 
mounted onto Si substrates. The locations of the embedded polymers were 
readily apparent in the optical microscope of the laser microprobe, which allowed 
acquisition of mass spectra from the embedded polymer and not the Spurrs 
epoxy. Thin sections of pure Spurrs were also analyzed in this evaluation. The 
bulk (thick) samples were prepared by cutting out a section of the sample or 
by scraping away the top 1 mm of sample surface. Cleaned surgical knives were 
used to avoid contaminating the sample surfaces. The preparation of thin sec- 
tions as well as the cutting or scraping of the top layers of the bulk specimens 
minimized the ion signals produced by chemicals such as mold release com- 
pounds and atmospheric contaminants. 

TABLE I 
Organic Polymers Analyzed by LIMS 

Polymer Physical form 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

Nylon 6 
Nylon 12 
Poly( l,4-butylene) terephthalate 
Polycarbonate 
Polystyrene 
Spurrs epoxy 
Mylar 500D poly(ethy1ene) terephthalate 
Polyimide S-11 (DuPont 1556) 
Polyimide S-09 (GE SPI 115) 
Polyimide S-24 (Hitachi PIX-1400) 
Polyimide S-10 (Toray LP-64) 
Polyimide S-19 (Ciba Geigy Prohimide 284) 
Photoresist 1400-33 (Shipley) 
59301 Epoxy (DDS/TGDDM, 0.2) 
59304 Epoxy (DDS/TGDDM, 0.75) 
59306 Epoxy (DDS/TGDDM, 1.0) 
59307 Epoxy (DDS/TGDDM, 1.5) 
Production Epoxy 
Texin 455D, Polyurethane (Mobay) 

TF" 
TF 
T F  
TF 
TF 
T F  
TF 
TF 
T F  
T F  
T F  
TF 
TF 
BSb 
BS 
BS 
BS 
BS 
BS 

TF designates thin film. 
BS designates bulk solid. 
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LIMS Analysis 

The LIMS analyses were performed on a Cambridge Mass Spectrometry, 
Ltd. (Cambridge, England) Model LIMA 2A reflection mode laser microprobe 
instrument, which has been described in detail elsewhere? Fifteen positive and 
negative ion laser microprobe mass spectra were obtained at 3 different laser 
irradiances from the 19 polymers listed in Table I. The laser irradiances cor- 
responded to the threshold for ionization and irradiance values, which produced 
5 and 25 times the threshold ion intensity. Over 1100 mass spectra were acquired 
from this polymer set. Mass spectra were typically acquired over a mass range 
from 0 to 300 amu. The upper mass range was limited by the Sony-Tektronix 
390 AD transient recorder that operated at a sampling frequency of 60 MHz. 
Essentially no ions were detected above mass 300 with the LIMS configuration 
used in this study. 

Data Analysis 

The spectra were normalized to correct for differences in concentrations and 
ionization yields. The mass spectra were normalized to unit vector length au- 
toscaled so that peaks of higher masses and lower abundances were weighted 
equally with peaks of lower mass and higher abundance. The resulting data 
sets were compressed by eigenvector transformations so that the data would 
be overdetermined by a factor of 3. These eigenvectors also represented at least 
80% of the variance of the data set. Sample distributions were converted from 
a multidimensional space to a two-dimensional space by plotting the sample 
scores on two principal components at a time ( Karhunen-Loeve plots). The 
classification algorithms used the principal component scores as variables. 

The LIMS data was also analyzed using a traditional discriminant analysis 
approach and an expert system that performs classification via an entropy 
calculation. The expert system converts the scores from the principal compo- 
nents into a symbolic representation using a modified ID3 algorithm." Because 
the categories in the principal component training set are known, an attribute 
can be found that separates the categories. The median value of two adjacent 
scores from different categories is used as the attribute. The attribute with the 
lowest entropy is selected in the rule-building system that partitions the data. 

The entropy of classification for class C with attribute A ,  H (  C I A ) , is a 
measure of the uncertainty after a classification is made according to a decision 
criterion. The entropy of classification is given by 

Equation ( 1 ) gives the entropy for an attribute where n is the number of different 
classes and p ( ci 1 a,) is a probability obtained by counting the number of obser- 
vations of class i with attribute j and dividing that number by the number of 
occurrences of the j t h  attribute. Equation (2)  is the sum of the entropy for 
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each attribute weighted by the prior probability the attribute occurs. The number 
of attributes is m and p (a,)  is a probability obtained by counting the number 
of observations with a given attribute and dividing that number by the total 
number of observations. A zero entropy will be obtained when all the samples 
in the training set are correctly classified. 

Cross validation of the results was used to evaluate the performance of the 
expert system and discriminant analysis. For example, cross validation of the 
canonical variates provides an unbiased measure of the predictive ability of 
the different canonical variates for classifying the different spectra into the 
correct category. Cross validation is accomplished by removing a spectrum from 
the training set, building a model based on the canonical variates, and then 
determining how well the model predicts the category of the spectrum that was 
removed. All calculations were performed on an IBM PS / 2 Model 60 computer 
operating under MS-DOS 3.3. All computations were performed by the RE- 
SOLVE software package, which is a general-purpose data analysis system." 
All graphs were obtained from screen dumps of the RESOLVE software to a 
Hewlett-Packard Laser Jet 500f printer. 

RESULTS AND DISCUSSION 

Polymers 1 through 5, 6, and 19 in Table I are relatively common polymers 
employed in a variety of applications. The polyimide and photoresist samples 
are routinely used in the microelectronics industry. The DDS /TGDDM epoxy 
material is used as the binder matrix for continuous carbon fiber reinforced 
 composite^.'^ Polymers 1-5 and 7 have relatively simple structures while 
many of the other polymers are chemically complex. For example, the DDS/ 
TGDDM material is a mixture of a few parts per hundred amine function of 
4,4'-diaminodiphenyl sulfone ( DDS ) with 80-90% by weight of tetraglycidyl 
4,4'-diamino diphenylmethane (TGDDM ) and 10-20% of a polyglycidyl 
ether of bisphenol A Novolac epoxy. The various DDS/TGDDM epoxies 
analyzed contained different hardener (DDS ) to resin (TGDDM) ratios. 
One of the objectives of this study was to determine whether the LIMS mass 
spectra would provide distinct characterizations of the different epoxy formu- 
lations. 

Representative laser microprobe mass spectra of several of these polymers 
are illustrated in Figures 1 through 4. It should be noted that the ordinate of 
the spectra is a logarithmic scale. This representation presents the false 
impression that there are numerous peaks in the spectra, while in fact, only a 
small number of the more intense peaks are present when projected on a linear 
scale. The more intense peaks are numbered in the figures. High irradiance 
positive ion spectra of nylon 12 and Mylar 500D are illustrated in Figure 1. 
The spectra are comprised primarily of X,H; cluster ions. The Mylar mass 
spectrum extends to higher mass values and contains obvious aromatic peaks 
at masses 77,91, and 105. The peaks at m / z  149 and 165 are probably formed 
from the terephthalate species.'* Figure 2 illustrates low-irradiance mass spectra 
produced from the polyurethane and one of the DDS /TGDDM formulations. 
These spectra contain C,H; cluster ions, several aromatic ions along with 
distinctive higher mass peaks. Figure 3 shows low-irradiance, positive ion mass 
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High laser irradiance, positive ion LIMS mass spectra of nylon 12 and Mylar 500D. Fig. 1. 

spectra of two of the DDS/TGDDM samples. The low-irradiance analysis of 
these samples provided the most distinctive and reproducible mass spectra (see 
following discussion). The top spectrum has a detector baseline shift that is 
indicative of a high level of ionization and/or metastable decompositions in 
the mass spectrum. These samples were bulk specimens having a greenish- 
red color and appeared to absorb the incident laser light quite efficiently. 
Efficient absorption could account for the observed high degree of ioniza- 
tion. The spectra contain the familiar C,H; cluster ions along with several 
aromatic ion signals. These two spectra do, however, appear qualitatively 
different. 
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Fig. 2. Low-irradiance, positive ion LIMS mass spectra of polyurethane and one DDS/TGDDM 
epoxy. 

The spectra in Figure 4 are examples of negative ion mass spectra produced 
from the photoresist and one of the polyimide samples. The negative ion spectra 
generally contain intense C; ion signals in contrast to the more intense 
C,H; cluster ions observed in the positive ion ana1y~es.l~ These two spectra 
are quite similar except for the high-intensity m / z  26 (CN-) ions detected in 
the polyimide spectrum. 

The influence of laser irradiance variations on positive ion production and 
a comparison of positive and negative spectra for Mylar 500D are summarized 
in Figure 5 .  The major effect of a change in laser power results in both the 
number and intensity of the observed peaks. The high-intensity spectrum [Fig. 
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Fig. 3. Low-irradiance, positive ion LIMS mass spectra of two DDS/TGDDM epoxies. 

5 ( a )  ] when compared to the medium- and low-intensity spectra [Fig. 5 ( b )  and 
( c )  ] shows a systematic decrease in the number of peaks and their respective 
ratios. The best reproducibility was obtained for the low irradiation energies. 
As expected, the low-irradiance negative ion spectrum in Figure 5 ( d )  is quite 
different than its corresponding positive ion spectrum. An increase in power 
also caused an increase in peak intensities and in the total number of peaks. 
In contrast to the positive ion spectra, the best reproducibility for the negative 
ion work was obtained for the high-irradiance experiments. 

There are several methods of analyzing the LIMS polymer data to determine 
the uniqueness of the mass spectra produced from different polymers. A qual- 
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Fig. 4. High-irradiance, negative ion LIMS mass spectra of photoresist and polyimide samples. 

itative comparison of the mass spectra shows the obvious high relative intensity 
of various C,H; cluster ions. The distribution of these intensities for the various 
samples is not sufficiently unique to permit accurate classification of the polymer 
type. It is interesting to note, however, that the reproducibility of the various 
high-intensity ion signals produced for a given sample under a given analysis 
condition is quite good. The measured relative standard deviations of the peak 
area ion intensities for the more intense ion signals vary from 1 to 15% de- 
pending on the laser irradiance and the polymer. In general, the ion signals 
that contain the most chemical information (i.e., monomeric or obvious struc- 
turally related fragment peaks or aromatic structures) have low relative inten- 
sities and, hence, greater imprecision than the more intense C,H; cluster ions. 
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Since the qualitative comparisons of these various mass spectra are not suffi- 
ciently different to permit classification, the spectral data base was analyzed 
using pattern recognition techniques in order to determine whether the spectra 
from different polymers were in fact distinct. 

The pattern recognition procedures employed in this study were based on 
principal component analysis / discriminant analysis techniques that employ 
the basic assumption that the data can be described by a linear combination 
of various factors (in this case, ion masses) having different weights or load- 
ings.16 The first step in all of the several commonly utilized factor analysis/ 
discriminant analysis procedures is to determine the primary factors or principal 
components that best describe the data set.I7 Principal components were cal- 
culated by the power method.18 Each principal component is a linear combi- 
nation of the mass spectra in the data set. Spectra composed of principal com- 
ponents are referred to as factor spectra. 

Once the principal components have been determined, discriminant analysis 
techniques can be performed on the mass spectral scores. Prior to discriminant 
analysis the polymers are categorized by their chemical composition. Discrim- 
inant analysis maximizes the variance among the average scores of the categories 
while minimizing the variance within each category." The discriminant analysis 
procedure further reduces dimensionality of the spectra to n - 1 where n is the 
number of different categories. The orthogonal components obtained from dis- 
criminant analysis are referred to as the canonical variates. If the number of 
statistically significant canonical variates is less than n - 1, then the different 
categories will not be adequately resolved. In other words, some of the categories 
may be overlapped. The original data set can then be employed to cross validate 
the canonical variates. 

The ability of the principal component analysis/discriminant techniques to 
qualitatively separate the various mass spectra into classes can be observed by 
plotting the scores. The relationships that exist among the mass spectra may 
be visualized, by examining the scores plotted on two components at  a time. 

Figures 6 through 10 illustrate component scores for the first two canonical 
variates observed in various analyses of the different polymer sets. The variance 
accounted for by the canonical variates is ranked from highest (first component) 
to the lowest (last component), and the largest contribution to the total variance 
is generally contained in the first few components. Figure 6 plots the scores 
for these two components obtained in the analysis of the high-irradiance, pos- 
itive ion data produced from the first 7 polymers listed to Table I. This data 
set is comprised of 15 mass spectra (observations) for each polymer and the 
component score plot indicates good separation between the various classes of 
polymers as well as reasonably good (tight) clustering of the spectra in each 
class. Thus, the discriminant analysis technique qualitatively separates the 
spectra of the different polymers. A more quantitative measure of the uniqueness 
of these spectra is the accuracy of the cross validation analysis. Cross validation 
of the discriminant analysis results accurately classified 85% of the mass spectra 
while the expert system accurately classified 95% of the data for this high- 
irradiance, positive ion data set. These classification accuracies are quite good 
for this group of polymers. 

Figure 7 plots the scores for the first 2 canonical variates for the data set of 
5 randomly selected mass spectra obtained under high laser irradiance condi- 
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Fig. 6. Component score plot for first two linear discriminants for a data set comprised of 
high-irradiance, positive ion LIMS mass spectra of seven polymers. The polymers are identified 
by the following legend (1) Nylon 6, ( 2 )  nylon 12, (3) poly(l,l-butylene) terephthalate, (4 )  
polycarbonate, ( 5)  polystyrene, (6 )  Spurrs epoxy, ( 7 )  Mylar 500D poly( ethylene) terephthalate. 
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Fig. 7. Component score plot for first two linear discriminants for a data set comprised of 
high-irradiance, positive ion LIMS mass spectra of 17 polymers. The polymers are identified by 
the following legend (1) Nylon 6, ( 2 )  nylon 12, (3) poly( 1,4-butylene) terephthalate, ( 4 )  poly- 
carbonate, ( 5 )  polystyrene, ( 6 )  Spurrs epoxy, ( 7 )  Mylar 500D, (8) polyimide S-09, (9 )  polyimide 
S-24: ( A )  Polyimide S-19, ( B )  photoresist 1400-33, ( C )  59301 epoxy, ( D )  59304 epoxy, (E )  59307 
epoxy, ( F )  production epoxy, ( G )  59306 epoxy, ( H )  Texin 455D. 
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tions from a group of 17 polymers. This more limited data set (i.e., the number 
of observations divided by the number of categories is smaller) does not exhibit 
a good separation. The software was able to process approximately 105 mass 
spectra at a time. The component score plot in Figure 7 does, however, illustrate 
good separation and clustering of the polyimide group ( 3  types), the photoresist 
and the polycarbonate. It is interesting to note that the poly( 1,4-butylene) 
terephthalate and polycarbonate spectral data separate reasonably well in this 
data set. The canonical variate classification accuracy for this group of polymers 
is only 39%, which reflects the limited number of observations in this data set. 
The expert system accurately classified 60% of this data. 

Figure 8 plots the component scores for the first 2 canonical variates from 
a low-irradiance, positive ion analysis of the full set of 19 polymers. Five mass 
spectra were randomly selected for each polymer. Several of the polymers sep- 
arated reasonably well including the polyurethane, polyimides, one of the DDS/ 
TGDDM formulations, and nylon 6. The cross validation accuracy for this set 
of data was 36% while the expert system classification yielded a cross validation 
accuracy of 63 % . 

The next two component score plots represent sample groups that are in- 
creasingly difficult to distinguish mass spectrometrically. As previously dis- 
cussed, the spectra from these two polymer types were very similar. Figure 9 
is a plot of the component scores for the first two canonical variates obtained 
from a data set comprised of a high-irradiance, negative ion spectra produced 
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Fig. 8. Component score plot for the first two linear discriminants for a data set comprised 
of low-irradiance, positive ion LIMS mass spectra of 19 polymers. The polymers are identified by 
the following legend (1) Nylon 6, ( 2 )  nylon 12, ( 3 )  poly(l,4 hutylene) terephthalate, ( 4 )  poly- 
carbonate, ( 5 )  polystyrene, ( 6 )  Spurrs epoxy, ( 7 )  Mylar 500D, (8)  polyimide S-09, ( 9 )  polyimide 
S-24: ( A )  Polyimide S-19, (B)  photoresist 1400-33, ( C )  59301 epoxy, ( D )  59304 epoxy, ( E )  pho- 
toresist, (F )  production epoxy, ( G )  59306 epoxy, (H) Texin 455D, ( I )  polyimide S-11, (J) polyimide 
s-10. 
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Component score plot for the first two linear discriminants for a data set comprised 
of high-irradiance, negative ion LIMS mass spectra of five polyimide and one photoresist sample. 
The polymers are identified by the following legend (1) Polyimide S-11, ( 2 )  polyimide S-09, (3)  
polyimide S-24, (4)  polyimide S-10, (5) polyimide S-19, (6) photoresist 1400-33. 

Fig. 9. 

from the polyimide and photoresist samples. This data shows that the structure 
of the five polyimides are similar to each other but different from the photoresist 
material. The pattern recognition results are clearly more conclusive than the 
visual inspection of the spectra. Pattern recognition has been demonstrated to 
provide differentiation capabilities in many cases where differences among peaks 
in a set of mass spectra might be as subtle as intensity changes in only two or 
three peaks. 

The photoresist spectra (group 6)  are readily distinguished from the various 
polyimides, and there is good separation of the group 1 and 2 polyimides. The 
canonical variate cross validation yielded a classification accuracy of 60% while 
the expert system correctly classified 75% of the spectra. The analysis and 
classification of the spectra of polyimides and photoresist has very important 
applications in the microelectronics industry in which it is often necessary to 
determine the composition of suspected organic residues of these types of com- 
pounds on Si or GaAs substrates. These residues can adversely affect the per- 
formance of semiconductor devices and are present on the substrate surfaces 
because of incomplete photoresist removal and/or misalignments in the various 
masking steps. These residues typically have micrometer or submicrometer 
dimensions, and thus an organic microprobe technique is required for their 
identification. The component scores illustrated in Figure 9 indicate that the 
principal component /discriminant technique can provide a useful method for 
distinguishing these different compounds within micrometer diameter areas. 

The component scores illustrated in Figure 10 represent an even more difficult 
analytical problem. The data set for this analysis was the low-irradiance, positive 
ion mass spectra produced from various DDS /TGDDM epoxy compositions. 
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Fig. 10. Component score plot for the first two canonical variates for a data set comprised of 
low-irradiance, positive ion LIMS mass spectra of the five DDS/TGDDM epoxy formulations. 
The polymers are identified by the following legend (C)  59301 Epoxy (0 .2 ) ,  ( D )  59304 epoxy 
(0.75), ( E )  59307 epoxy (1.5),  ( F )  production epoxy, (G)  59306 epoxy (1 .0) .  

These compositions differed in the gram equivalent amount of DDS hardener 
added to the bulk TGDDM/Novolac resin mixture. It is well known that the 
physical properties of the DDS/TGDDM epoxy including its ability to strongly 
bond continuous carbon fibers are very dependent on the DDS/TGDDM mix- 
ture ratios.” One problem associated with using this epoxy system as a carbon 
fiber reinforcement matrix is that although optimum bulk DDS /TGDDM mix 
ratios of 0.75-0.85 can be prepared, the bulk resin/hardener blend can segregate 
about the micrometer diameter carbon fibers producing poor fiber / matrix 
bonding. This inadequate bonding can result in delamination of the fibers from 
the matrix that could produce catastrophic consequences in the use of this 
carbon fiber/epoxy system for such applications as aerospace components. 
Thus, the ability to determine the DDS/TGDDM ratios at  the actual fiber/ 
matrix interface coupled with a knowledge of the bulk hardener/resin ratios 
and the macroscopic physical properties of the fiber/matrix system could pro- 
vide a method for certifying the optimum DDS/TGDDM blend ratios required 
for adequate bonding. The component score plot in Fig. 10 illustrates that the 
production epoxy formulation that represents a blend ratio having good bonding 
characteristics can be separated from both the C and E samples. The ratio of 
DDS to TGDDM for the production epoxy equals 0.8 (the gram equivalent 
weight ratios are given in parenthesis in the legend of this plot) while the C 
samples have low (0.2) DDS/TGDDM ratios and the E samples have high 
( 1.5) hardener to resin ratios. Thus, the discriminant analysis technique sep- 
arates the extreme DDS/TGDDM ratios; however, it does not adequately sep- 
arate the resin/ hardener ratios, which are quite similar. The cross validation 
classification accuracy of the discriminant analysis and the expert system for 
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this data set was 60%. Although this classification accuracy is not adequate for 
rigorous quality control analysis of these epoxy formulations, the technique of 
partial least-squares regression analysis *' could possibly provide a much higher 
accuracy for the classification of the spectra from this chemically complex 
system. 

CONCLUSIONS 

The principal component analysis techniques suggest that the optimum 
classification accuracy for LIMS spectra of polymeric materials is on the order 
of 80%. This level of predictive accuracy is sufficient for a number of applications 
requiring a qualitative identification of the presence or absence of an organic 
polymer on various substrates. Improvements in the accuracy can possibly be 
achieved by increasing the data base size and/or by preclassifying spectra with 
respect to polymer type. This preclassification procedure might involve devel- 
oping discriminant analysis data bases of selected polymer groups such as ar- 
omatic and nonaromatic polymers, photoresists, and polyimides. Approaches 
to various types of preclassification are being explored. The use of partial least- 
squares regression techniques may find extensive utilization in quantitatively 
classifying different relative concentration levels in chemically similar polymers, 
and this classification technique is currently under evaluation. 

The results of the polymer analysis by laser microprobe mass spectrometry 
demonstrate that the technique can provide useful, sensitive qualitative organic 
microanalysis of a wide range of chemical species. The utility of this technique 
for organic characterizations applied to a wide range of fundamental and prac- 
tical analytical problems will depend on the development of mass spectral data 
bases, library search routines, as well as the implementation of pattern rec- 
ognition software routines. These approaches will demand that acceptable intra- 
and interlaboratory reproducibility be established for the technique. 

Charles Evans & Associates acknowledges support for this research from the National Science 
Foundation, Small Business Innovation Research Program, Grant #ISI-8760431. 
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